Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824
نویسندگان
چکیده
BACKGROUND Consolidated bioprocessing (CBP) is reliant on the simultaneous enzyme production, saccharification of biomass, and fermentation of released sugars into valuable products such as butanol. Clostridial species that produce butanol are, however, unable to grow on crystalline cellulose. In contrast, those saccharolytic species that produce predominantly ethanol, such as Clostridium thermocellum and Clostridium cellulolyticum, degrade crystalline cellulose with high efficiency due to their possession of a multienzyme complex termed the cellulosome. This has led to studies directed at endowing butanol-producing species with the genetic potential to produce a cellulosome, albeit by localising the necessary transgenes to unstable autonomous plasmids. Here we have explored the potential of our previously described Allele-Coupled Exchange (ACE) technology for creating strains of the butanol producing species Clostridium acetobutylicum in which the genes encoding the various cellulosome components are stably integrated into the genome. RESULTS We used BioBrick2 (BB2) standardised parts to assemble a range of synthetic genes encoding C. thermocellum cellulosomal scaffoldin proteins (CipA variants) and glycoside hydrolases (GHs, Cel8A, Cel9B, Cel48S and Cel9K) as well as synthetic cellulosomal operons that direct the synthesis of Cel8A, Cel9B and a truncated form of CipA. All synthetic genes and operons were integrated into the C. acetobutylicum genome using the recently developed ACE technology. Heterologous protein expression levels and mini-cellulosome self-assembly were assayed by western blot and native PAGE analysis. CONCLUSIONS We demonstrate the successful expression, secretion and self-assembly of cellulosomal subunits by the recombinant C. acetobutylicum strains, providing a platform for the construction of novel cellulosomes.
منابع مشابه
Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824.
Clostridium acetobutylicum ATCC 824 converts sugars and various polysaccharides into acids and solvents. This bacterium, however, is unable to utilize cellulosic substrates, since it is able to secrete very small amounts of cellulosomes. To promote the utilization of crystalline cellulose, the strategy we chose aims at producing heterologous minicellulosomes, containing two different cellulases...
متن کاملGenome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum.
The genome sequence of the solvent-producing bacterium Clostridium acetobutylicum ATCC 824 has been determined by the shotgun approach. The genome consists of a 3.94-Mb chromosome and a 192-kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not...
متن کاملPhysical and genetic map of the Clostridium acetobutylicum ATCC 824 chromosome.
A physical and genetic map of the Clostridium acetobutylicum ATCC 824 chromosome was constructed. The macrorestriction map for CeuI, EagI, and SstII was created by ordering the 38 restriction sites by one- and two-dimensional pulsed-field gel electrophoresis (PFGE) and by using an original strategy based on the CeuI enzyme and indirect end labelling by hybridization on both sides of the CeuI si...
متن کاملDevelopment and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824.
A gene expression reporter system (pHT3) for Clostridium acetobutylicum ATCC 824 was developed by using the lacZ gene from Thermoanaerobacterium thermosulfurogenes EM1 as the reporter gene. In order to test the reporter system, promoters of three key metabolic pathway genes, ptb (coding for phosphotransbutyrylase), thl (coding for thiolase), and adc (coding for acetoacetate decarboxylase), were...
متن کاملSubstrate-induced production and secretion of cellulases by Clostridium acetobutylicum.
Clostridium acetobutylicum ATCC 824 is a solventogenic bacterium that grows heterotrophically on a variety of carbohydrates, including glucose, cellobiose, xylose, and lichenan, a linear polymer of beta-1,3- and beta-1,4-linked beta-D-glucose units. C. acetobutylicum does not degrade cellulose, although its genome sequence contains several cellulase-encoding genes and a complete cellulosome clu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2013